
Unit Testing

Makes Your

Code Better

Greg Ward <greg@gerg.ca>
@gergdotca
PyCon 2014

Montreal, QC • Apr 12, 2014

http://gerg.ca/talks/testing-pycon/

http://gerg.ca/talks/testing-pycon/

It's for the common good

Assumption #1

You've at least started to drink the Kool-Aid™:

either you're already writing unit tests

or you're ready to start, with or without this talk

http://gerg.ca/talks/testing-pycon/

Assumption #2

(Corollary of Assumption #1)
You already get that unit testing helps make your code more correct.

I'm talking about “better” on a higher plane: æsthetics, elegance,
beauty.

http://gerg.ca/talks/testing-pycon/

Elegance? Shmelegance!

Beautiful code is better code:

easier to understand

easier to extend

easier to reuse

http://gerg.ca/talks/testing-pycon/

Plan of attack

Real-life case study:

Examine some untested code

Work through adding tests

Understand how imperfect design → hairy tests

Modify the design for simpler tests → better code

http://gerg.ca/talks/testing-pycon/

Background

what is this code?

why does it exist?

where does it come from?

what requirements does it meet?

http://gerg.ca/talks/testing-pycon/

What is this code?

we¹ measure the Internet

we ping all your public IPs every couple of months

more relevant: we traceroute to 1.5m hosts all day, every day, from
~100 collectors around the world

result: ~200m traces containing ~3b hops every day

and then we try to make sense of this torrent of data

¹ www.renesys.com

http://gerg.ca/talks/testing-pycon/

A torrent of data

clearly we need a super-duper, highly-advanced, next-generation,
whiz-bang data storage and representation technology

like... plain text?

(ok, sure, we also use PostgreSQL and Redis when performance
matters)

http://gerg.ca/talks/testing-pycon/

Staying sane with plain text

keep it simple, stupid

restrict the data tightly to avoid escaping

stay consistent even as data and requirements evolve

http://gerg.ca/talks/testing-pycon/

Example 1: raw traceroute

T3 files contain one record (line) for every traceroute sent

(note variable number of fields, just to keep things interesting)

T3 1394305276 icmp 0 \
172.18.79.139 vps01.nbo1 \
62.219.197.44 S \
172.17.28.6 0.924 2 \
41.139.255.94 0.583 3 \
[...]
62.219.197.44 201.326 14

http://gerg.ca/talks/testing-pycon/

Example 2: daily summary

TIP1 files contain one record summarizing all the traces sent to a single
target on a given day

(note field with internal structure: key-value mapping)

TIP1 1395878400 67.212.64.4 \
67.212.64.0/24 45.50884 -73.58781 \
6077243 NA CA QC Montréal \
67.212.64.0/19 Peer1 \
113 163 vps01.bos1=2,vps01.tlv1=1,⋯,vps01.hkg2=2

http://gerg.ca/talks/testing-pycon/

Spot the similarities?

tab-separated

first column of every line is the data format

every column has a name and a type

most types are simple (str, int, float)

some are complex (comma-separated string-to-int mapping)

UTF-8 encoded

often bzipped

http://gerg.ca/talks/testing-pycon/

Common format, common library

we have a couple dozen of these formats

writing a new parser from scratch for each one would be nuts

hence: GenericLineParser

with many subclasses: T3Parser, TIP1Parser, etc.

http://gerg.ca/talks/testing-pycon/

Requirements for

GenericLineParser

structured (columns and types)

fast (simple files, but large: don't always want to parse that comma-
separated string-to-int mapping)

flexible (must be trivial to define new formats)

Good news: when I started testing, the code already met all of those
requirements nicely.

http://gerg.ca/talks/testing-pycon/

Overview

class GenericLineParser(object):
 # -- main public interface
 def __init__(self, name, f=None,
 fields=None, nfields=None, sep='\t'):
 def __str__(self):
 def parse(self, line=None, record=None, convert=True):
 def read(self, verbosity=1, convert=True,
 nreport=100000):

 # -- mostly internal methods
 def new(self):
 def convert_record_at_index(self, i, valin):
 def convert_record(self, nt, field_name):
 def convert_record_types(self, rec):

http://gerg.ca/talks/testing-pycon/

Easy to define new formats

tip1_fields = [
 ('DCV', str),
 ('ts', int),
 ('ip', str),
 ('routepfx', str),
 ('geopfx', str),
 ('latitude', float),
 ('longitude', float),
 [...]
 ('n_collectors', int),
 ('n_responses', int),
 ('collectors', CskvSIList)]

class TIP1Parser(GenericLineParser):
 def __init__(self, f=None, fields=tip1_fields,
 nfields=None, sep='\t'):
 GenericLineParser.__init__(
 self, 'TIP1', f, fields, nfields, sep)

http://gerg.ca/talks/testing-pycon/

Where to start testing?

Well, you can't test an object if you can't construct it... so I like to start
with the constructor

This goes double in cases like this one, with a non-trivial constructor
(complex internal logic, sometimes does I/O)

http://gerg.ca/talks/testing-pycon/

About that constructor

def __init__(self, name, f=None,
 fields=None, nfields=None, sep='\t'):
 [...set some attrs...]
 if f is None:
 elif isinstance(f, basestring):
 try:
 if f.endswith('.bz2'):
 else:
 except IOError as e:
 except:
 elif isinstance(f, (file, bz2.BZ2File)):
 elif isinstance(f, Iterable):
 else:
 raise …

http://gerg.ca/talks/testing-pycon/

First reactions

if this is a "line parser", why does it care so much about filenames?

so... it's a line parser and a file opener and a file reader? hmmmm...

http://gerg.ca/talks/testing-pycon/

Testing the constructor

6 test cases for one method: definitely a code smell.

class TestGenericLineParser(unittest.TestCase):
 def test_constructor_minimal_args(self):
 '''construct with bare minimum arguments'''

 def test_constructor_filename(self):
 '''parser that will read from UTF-8 file'''

 def test_constructor_filename_bz2(self):
 '''parser that will read from bz2 UTF-8 file'''

 def test_constructor_error(self):
 '''tickle exception-handling code in constructor'''

 def test_constructor_file(self):
 '''pass constructor a file object'''

 def test_constructor_list(self):
 '''pass constructor a list of lines'''

http://gerg.ca/talks/testing-pycon/

Let's fix the constructor (a bit)

LineParsers parse lines. Something else should open files:

(These are all straightforward and thoroughly unit-tested.)

def zopen(name, mode='r'):
 '''Open a file, possibly compressed. Handles ".gz"
 files with gzip.GzipFile, ".bz2" files with
 bz2.BZ2File, and all other files with builtin
 open().'''

def uopen(name, mode='r'):
 '''Open a UTF-8 encoded file with strict error
 handling. read() returns unicode strings and
 write() expects unicode.'''

def uzopen(name, mode='r'):
 '''Open a possibly compressed, UTF-8 encoded file.
 (De)compression depends on the filename, as with
 zopen(). Uncompressed content must be UTF-8
 encoded, as with uopen().'''

http://gerg.ca/talks/testing-pycon/

Constructor, version 2

Good: no longer cares about filenames at all (caller can use uzopen()
directly).

def __init__(self, name, f=None,
 fields=None, nfields=None, sep='\t'):
 [...set some attrs...]
 if f is None:
 elif isinstance(f, (file, bz2.BZ2File)):
 elif isinstance(f, Iterable):
 else:
 raise ...

http://gerg.ca/talks/testing-pycon/

Constructor tests, version 2

class TestGenericLineParser(unittest.TestCase):
 def test_constructor_minimal_args(self):
 '''construct with bare minimum arguments'''

 def test_constructor_filename(self):
 '''parser that will read from UTF-8 file'''

 def test_constructor_filename_bz2(self):
 '''parser that will read from bz2 UTF-8 file'''

 def test_constructor_error(self):
 '''tickle exception-handling code in constructor'''

 def test_constructor_file(self):
 '''pass constructor a file object'''

 def test_constructor_list(self):
 '''pass constructor a list of lines'''

http://gerg.ca/talks/testing-pycon/

Progress so far

constructor is simpler and shorter

other code can use zopen(), uzopen()

now supports ".gz" files for free (or future compressed formats)

less test code to maintain

fewer code paths to worry about

http://gerg.ca/talks/testing-pycon/

Plenty more to do

constructor: treat file/BZ2File/Iterable the same

factor out progress logging

shrink read() method to a trivial wrapper

fewer code paths = fewer, simpler tests = better code

http://gerg.ca/talks/testing-pycon/

OK, what's the big deal?

So I refactored some messy code. Whatever.

writing the tests made me look deeper

made me read the code very carefully

made me see both the good side and the bad side

http://gerg.ca/talks/testing-pycon/

The “courage to refactor”

This is something unit-testing zealots like to boast about.

sounds hokey

sounds like something from a self-help book

but it's true!

I have absolutely no fear about tearing GenericLineParser to pieces
and putting it back together again, even though I didn't write it

http://gerg.ca/talks/testing-pycon/

No happy ending... yet

Code that uses GenericLineParser:
almost completely untested → afraid to refactor

easy to adapt existing clients of GenericLineParser to use uzopen()

but because those client apps are untested, I cannot ensure that
my change works

best I can do: patch, ask maintainer to test for me

Thus: the job remains half done. ☹

http://gerg.ca/talks/testing-pycon/

Costs of not testing

incorrect code (bugs caught late in the cycle)

fear of refactoring

code duplication (→ bug duplication)

insufficient code reuse

http://gerg.ca/talks/testing-pycon/

Don't let this get you down!

1000 tests are better than 999 tests

1 test is vastly better than 0 tests

unit tests will never cover everything (unless you're a wild-eyed
maniacal crazed unit-testing fanatic¹)

but you'll be pleasantly surprised by how much you can cover with
some effort

¹ I do not recommend this

http://gerg.ca/talks/testing-pycon/

This talk is a Trojan horse

All of this has been said before.

eXtreme Programming (XP)

Test-Driven Development (TDD)

Agile Manifesto

blah blah blah

http://gerg.ca/talks/testing-pycon/

Conclusions

Of course writing unit tests makes your code more correct—that's
just obvious (right?).

Less obvious: writing unit tests makes your code more beautiful
(indirectly).

Beautiful code is more reusable, more maintainable, more pleasant
to work with.

Beautiful code is less expensive (in the long run).

http://gerg.ca/talks/testing-pycon/

Contact & further reading

Greg Ward <greg@gerg.ca>
@gergdotca
(I work for www.renesys.com.)

Extreme Programming Explained (Kent Beck, Cynthia Andres)

Refactoring: Improving the Design of Existing Code (Martin Fowler,
Kent Beck, et. al.)

Agile Software Development: Principles, Patterns, and Practices
(Robert C. Martin)

Growing Object-Oriented Software, Guided by Tests (Steve
Freeman, Nat Pryce)

http://gerg.ca/talks/testing-pycon/

http://gerg.ca/talks/testing-pycon/

